Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Educational video games can engage students in authentic STEM practices, which often involve visual representations. In particular, because most interactions within video games are mediated through visual representations, video games provide opportunities for students to experience disciplinary practices with visual representations. Prior research on learning with visual representations in non-game contexts suggests that visual representations may confuse students if they lack prerequisite representational-competencies. However, it is unclear how this research applies to game environments. To address this gap, we investigated the role of representational-competencies for students’ learning from video games. We first conducted a single-case study of a high-performing undergraduate student playing an astronomy game as an assignment in an astronomy course. We found that this student had difficulties making sense of the visual representations in the game. We interpret these difficulties as indicating a lack of representational-competencies. Further, these difficulties seemed to lead to the student’s inability to relate the game experiences to the content covered in his astronomy course. A second study investigated whether interventions that have proven successful in structured learning environments to support representational-competencies would enhance students’ learning from visual representations in the video game. We randomly assigned 45 students enrolled in an undergraduate course to two conditions. Students either received representational-competency support while playing the astronomy game or they did not receive this support. Results showed no effects of representational-competency supports. This suggests that instructional designs that are effective for representational-competency supports in structured learning environments may not be effective for educational video games. We discuss implications for future research, for designers of educational games, and for educators.more » « less
-
Abstract BackgroundRecent engineering education research has found improved learning outcomes when instructors engage students actively (e.g., through practice problems) rather than passively (e.g., in lectures). As more instructors shift toward active learning, research needs to identify how different types of activities affect students' cognitive engagement with concepts in the classroom. In this study, we investigate the effects of prompting novice students to draw when solving problems, a professional practice of engineers. PurposeWe investigate whether implementing instructional prompts to draw in an active learning classroom (a) increases students' use and value of drawing as a problem‐solving strategy and (b) enhances students' problem‐solving performance. MethodWe compared survey data and exam scores collected in one undergraduate class that received prompts to draw in video lectures and in‐class problems (drawing condition) and one class that received no drawing prompts (control condition). ResultsAfter drawing prompts were implemented, students' use and value of drawing increased, and these effects persisted to the end of the semester. Students were more likely to draw when provided drawing prompts. Furthermore, students who received prompts outperformed students who did not on exam questions that target conceptual understanding. ConclusionsOur findings reveal how implementing drawing prompts in an active learning classroom may help students engage in drawing and solve problems conceptually. This study contributes to our understanding of what types of active learning activities can improve instructional practices in engineering education. Particularly, we show how prompts that foster authentic engineering practices can increase cognitive engagement in introductory‐level engineering courses.more » « less
An official website of the United States government
